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Abstract

Improved algorithms for the solution of the three-
dimensional time-dependent Euler equations are presented for
aerodynamic analysis involving unstructured dynamic meshes.
The improvements have been developed recently to the spatial
and temporal discretizations used by unstructured grid flow
solvers. The spatial discretization involves a flux-split
approach which is naturally dissipative and captures shock
waves sharply with at most one grid point within the shock
structure. The temporal discretization involves either an
explicit time-integration scheme using a multi-stage Runge-
Kutta procedure or an implicit time-integration scheme using
a Gauss-Seidel relaxation procedure which is computationally
efficient for either steady or unsteady flow problems. With
the implicit Gauss-Seidel procedure, very large time steps
may be used for rapid convergence to steady state, and the step
size for unsteady cases may be selected for temporal accuracy
rather than for numerical stability. Steady flow results are
presented for both the NACA 0012 airfoil and the ONERA M6
wing to demonstrate applications of the new Euler solvers. The
paper presents a description of the Euler solvers along with
results and comparisons which assess the capability.

Introduction

Considerable progress has been made over the past two
decades on developing computational fluid dynamics (CFD)
methods for aerodynamic analysis.’.2 Recent work in CFD has
focused primarily on developing algorithms for the solution of
the Euler and Navier-Stokes equations. These methods of
solution typically assume that the computational grid has an
underlying geometrical structure. As an alternative,
algorithms have been developed recently which make use of
unstructured  grids.3-16 In two dimensions these grids are
typically made up of triangles and in three dimensions they
consist of an assemblage of tetrahedra. The unstructured grid
methods have been demonstrated to have distinct advantages
over structured grid methods in that they can easily treat the
most complex of geometric configurations and they also easily
allow for adaptive mesh refinement to treat very complicated
flow physics. Both of these advantages result from the
flexibility of orienting and numbering the elements which
make up the mesh in an arbitrary fashion. Many of the
methods based on unstructured grids, however, use a spatial
discretization based on central differencing with explicit
artificial dissipation, and use temporal discretizations
involving explicit time-marching such as a multi-stage
Runge-Kutta time integration. The explicit artificial
dissipation used in such schemes tends to smear shock waves
over several grid cells and requires the tuning of free
parameters that scale the dissipation. Also, the explicit time-
integration has a step size that is limited by the Courant-
Friedricks-Lewy (CFL) condition to very small values.
Consequently, thousands (and occasionally tens of thousands)
of time steps are required to obtain steady-state solutions, and
thousands of steps per cycle of motion are required for
unsteady solutions. Therefore, the purpose of the paper is to
report on improvements that have been developed recently to
the spatial and temporal discretizations of the unstructured
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grid flow solvers which resolve the numerical issues
described above. The spatial discretization now involves a so-
called flux-split approach based on the flux-vector splitting
of van Leer.17 The flux-split discretization accounts for the
local wave-propagation characteristics of the flow and
captures shock waves sharply with at most one grid point
within the shock structure. A further advantage is that the
discretization is naturally dissipative and consequently does
not require additional artificial dissipation terms or the
adjustment of free parameters to control the dissipation.
Furthermore, in addition to an explicit time-integration
scheme involving a multi-stage Runge-Kutta procedure, the
temporal discretization can alternatively be based on an
implicit time-integration scheme involving a Gauss-Seidel
relaxation procedure. This relaxation procedure is stable for
very large time steps and thus allows the selection of the step
size based on the temporal accuracy dictated by the problem
being considered, rather than on the numerical stability of the
algorithm. Consequently, very large time steps may be used
for rapid convergence to steady state, and an appropriate step
size may be selected for unsteady cases, independent of
numerical stability issues. The work reported herein
represents the extension to three dimensions of some of the
methods developed originally by the author in two
dimensions.}8 In Ref. 18, steady and unsteady flow results
demonstrated the accuracy and efficiency of the improvements
to the spatial and temporal discretizations for the NACA 0012
airfoil. To assess the performance of the three-dimensional
algorithm, calculations were performed for the ONERA M6
wing19 at a freestream Mach number of M, = 0.84 and an
angle of attack of a = 3.06°. This case is an AGARD standard

case for the -assessment of inviscid flowfield methods,19 where
experimental steady pressure data are available for
comparison with calculated pressures.

Euler Equations

In the present study the flow is assumed to be governed by
the three-dimensional time-dependent Euler equations which
may be written in integral form as

3
;jﬂodV+jan(En,+ Fn,+Gn,)dA=0 1

where Q Is the vector of conserved variables representing
mass, momenta, and energy, and E, F, and G are the convective
fluxes in the x, y, and z directions, respectively. The second
term is a boundary integral resulting from application of the
divergence theorem.

Spatial Discretization

The spatial discretization is based on Van Leers!7 flux-
vector splitting which is herein implemented as a cell-
centered scheme where the flow variables are stored at the
centroid of each tetrahedra and the control volume is simply
the tetrahedra itself. Consequently the spatial discretization
involves a flux balance where the fluxes along the four taces of
a given tetrahedra are summed as

Y HA =Y T(EA, +FA, +GA;) (2)
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where T is a transformation matrix which is required to rotate
the fluxes into a locally Cartesian coordinate system that has a
coordinate direction normal to the face. In Eq. (2) Ax, Ay, and
Az are the directed areas of the face in the x, y, and z

coordinate directions, respectively, and Af = Af + A§ +A§.

In general, the flux vector H is split in a one-dimensional
fashion into forward (H+) and backward (H-) vectors as

H = HHQ) + H(q*) )

where the notation H*(q") and H"(q*) indicates that the
fluxes HE are evaluated using upwind-biased interpolations of
the primitive variables q. In two-dimensions for a given
triangle j, for example, and considering the diagram in Fig.
1(a), the upwind-biased interpolation for q- along the edge
between triangles j and k is defined by

q'=qj+%[(1-x)A_+(1+‘()A+] 4
where A, =0k -Qq (5a}
A_=q-g (5b)

In Egs. (4) and (5), q;and q, are the vectors of primitive
variables at the centroids of triangles j and k, respectively,
and q, the vector of primitive variables at node i, is
determined by an average of the flow variables in the triangles
surrounding node i. The upwind-biased interpolation for q+

along this edge is determined similarly using the flow
variables at centroids j and k and the flow variables at node I.
In three-dimensions a similar interpolation procedure is used

where q; and g, are the vectors of primitive variables at the

centroids of tetrahedra j and k, respectively, and q,, the vector

of primitive variables at node i, is determined by an average of
the flow variables in the tetrahedra surrounding node i.

The parameter x in Eq. (4) controls a family of difference

schemes by appropriately weighting A_ and A,. On structured
meshes it is easy to show that x = -1 yields a fully upwind
scheme, x = 0 yields Fromm's scheme, and x = 1 yields central
differencing. The value x = 1/3 leads to a third-order-
accurate upwind-biased scheme, although third-order
accuracy is strictly correct only for one-dimensional
calculations. Nevertheless, x = 1/3 was used in the calculations
presented herein.

On highly stretched meshes in two dimensions, the formula
for A, is modified to be

2a
A*_a+b(qk-qi) (6)

where a and b are the distances from the midpoint of the edge to
the centroids of triangles j and k, respectively, as shown in
Fig. 1(b). This formula weights the flow variables in the
interpolation formula (Eq. (4)) differently to account for the
stretching of the mesh. For example, by substituting Eq. (6)
into Eq. (4) and letting x = 1 yields

q + Gk (7)

a+b a+b

For the case shown in Fig. 1(b), Eq. (7) clearly gives more
weight in the calculation of q- to the flow variables at centroid
j than to the flow variables at centroid k, since b>a. On highly
stretched meshes in three dimensions, a modified formula

similar to Eq. (6) is also used. Futhermore, in calculations
involving upwind-biased schemes, oscillations in the solution
near shock waves are expected to occur. To eliminate these
oscillations flux limiting is usually required. The flux limiter
modifies the upwind-biased interpolations for q- and q* such
that, for example

q'=qj+%[(1—xs)A_+(1+xs)A,_] (8)

where s is the flux limiter. In the present study, a
continuously differentiable flux limiter was employed which
is defined by

_2A_A, +¢

§= 9
A%+ A% e (%)

where e is a very small number to prevent division by zero in
smooth regions of the flow.

e centroid
B node

(a) centroids and nodes used in construction
of upwind-biased flow variables.

(b) distances between centroids and midpoint
of edge used in Egs. (6) and (7).

Fig. 1 Diagrams illustrating details of the flux-split Euler
algorithm implementation.



T | Discretizati

The unsteady Euler equations may be integrated in time
using either explicit or implicit time-marching procedures.
Each of these procedures is described briefly in the following
subsections.

Explicit_Time-Marchi

The Euler equations are integrated in time by assuming
that the conserved variables represented by Q are constant
within a control volume which yields

S(Va)+c(@ =0 (10)
where C represents the convective fluxes and V is the volume
of a given tetrahedron. These equations are integrated in time
using an explicit four-stage Runge-Kutta time-stepping
scheme given by

a?= "
Q"= q© _%_A_LC(Q(O))
v
A
Q? - @ -%V'C(o“’)
At
0(3) = Q(o) _%_\_I_C(Q(z)) (1 1)
Q¥ - O _ Avtc‘o(s))
Qn+1= Q(4)

To accelerate convergence to steady state, implicit residual
smoothing and local time-stepping are used. The residual
smoothing allows the use of CFL numbers that are larger than
that dictated by the stability of the original scheme. This is
accomplished by averaging implicitly the residual with values
at neighboring grid points. These implicit equations are solved
approximately by using several Jacobi iterations. The local
time-stepping uses a maximum allowable step size at each grid
point as determined by a local stability analysis.

\mplicit_Time-Marchi

The implicit algorithm is formulated by first
approximating the time derivative in the Euler equations by

3Q _2+64Q 2+0Q-Q" ¢ Q"-Q"'
dat 2 At 2 At 2 At (12)
where AQ=Q"*'-Q" and where the parameter ¢ controls
the temporal order of accuracy. For example, the scheme is
first-order-accurate in time if¢ = O and the scheme is
second-order-accurate in time if ¢ = 1. For an implicit
temporal discretization, the flux H must be treated at time
level (n+1) which is accomplished by linearizing according to

(13)

where 3H/3Q is the flux jacobian A. Also, Egs. (12) and (13)
involve @', the vector of flow variables at an iterate level (*)
which is normally taken to be time level (n). For unsteady
applications, however, subiterations may be performed to

drive Q" 10 Q"*'and thus minimize linearization and
relaxation errors.

With the flux-split spatial discretization, the forward and
backward fluxes are linearized for a given tetrahedron j as

TTHYG)+H(GOMA, = T TIHG) +H () A,

4
HY T'A*AJa0;+ 3 T-'AA 80,
mai

(14)

In this equation the last summation on the right hand side
involves A Q, , the change in the flow variables in the four
tetrahedra adjacent to tetrahedron j. Also, the exact jacobians
A* and A" are determined by differentiation of H and H by

the conserved variables Q. By combining Eqs. (12) and (14),
the Euler equations are discretized as

2+¢ V -1 . d R
[ . A_tI+ZT AT AJAQ + Y TTATA AQ,
m =1
* n n n-1
__2+¢Q-0Q", eQ-Q',
2 At 2 at

- TH(Q@)+H (q)] A, (185)
where | is the identity matrix. Direct solution of the system of
simultaneous equations which results from appiication of Eq.
(15) for all tetrahedra in the mesh, requires the inversion of
a large matrix with large bandwidth which is computationally
expensive. Instead, a Gauss-Seidel relaxation approach is used
to solve the equations whereby the summation involving A Q ,
is moved to the right hand side of Eq. (15). The terms in this
summation are then evaluated for a given time step using the
most recently computed values for the AQ's. The solution
procedure then involves only the inversion of a 5 x 5 matrix
(represented by the terms in square brackets on the left hand
side of Eq. (15)) for each tetrahedra in the mesh. The
procedure is implemented by first ordering the elements that
make up the unstructured mesh from upstream to downstream,
and the solution is obtained by sweeping two times through the
mesh as dictated by stability considerations. The first sweep
is performed in the direction from upstream to downstream
and the second sweep is from downstream to upstream. For
purely supersonic flows the second sweep is unnecessary.

Boundary Condit

To impose the flow tangency boundary condition along the
surface of the vehicle, the flow variables are set within
dummy cells that are effectively inside the geometry being
considered. The velocity components within a dummy cell, (u,
v, w)4, are determined from the values in the cell j adjacent
to the surface, (u, v, w)j. This is accomplished by first
rotating the components into a coordinate system that has a
coordinate direction normal to the boundary face. The sign of
the velocity component in this direction is changed (hence
imposing no flow through the face) and the three velocity
components are then rotated back into the original x, y, z
coordinate system. After considerable algebra this yields

u 1-2n2 -2n,n,  -2m,n, | [U

Ve =|-2nn, 1-2n§ ~-2n,n; | {v (16)
2

w d —2nxnz —2nynz 1—2nz w i

where n,, n,, and n, are the x, y, and z components of the unit

vector that is normal to the boundary face. Also, pressure and
density within the dummy cell are set equal to the values in the
cell adjacent to the surface.



After application of the upwind-biased interpolation
formula to determine g~ and q* at each face, the velocity
components are corrected to give a "strong” implementation of
the surface boundary condition according to

Ucorrected =U =Ny {Un, + vn, + wn;)

Veorrected =V — Ny (un, + vny + wn;) (17)

Weorrected =W — Nz (Un, + vn, + wny)

In the far field a characteristic analysis based on Riemann
invariants is used to determine the values of the flow variables
on the outer boundary of the grid. This analysis correctly
accounts for wave propagation in the far field which is
important for rapid convergence to steady-state and serves as
a "nonreflecting” boundary condition for unsteady applications.

To assess the accuracy and efficiency of the unstructured-
grid upwind-Euler algorithm and to demonstrate several of the
basic features of the scheme, calculations were first
performed in two dimensions for the NACA 0012 airfoil.
These results were obtained using the unstructured grid shown
in Fig. 2. The grid has 3300 nodes, 6466 triangles, and
extends 20 chordlengths from the airfoil with a circular outer
boundary. Also there are 110 points that lie on the airfoil
surface. Steady-state calculations were performed for the
airfoil at a freestream Mach number of M_= 0.8 and an angle
of attack of a = 1.25°. The results were obtained using both
the implicit relaxation time-marching scheme and the explicit
four-stage Runge-Kutta time-marching scheme. The explicit
time-marching results were obtained using a CFL number of
2.5 (since the CFL limit is approximately 2.8) and the
implicit time-marching results were obtained using a CFL
number of 100,000. Such a large value was used for the
implicit results since the relaxation scheme has maximum
damping and hence fastest convergence for very large time
steps. This is in contrast with implicit approximate
factorization schemes which have maximum damping for CFL
numbers on the order of 10.

A comparison of the convergence histories between explicit
and implicit time-marching is shown in Fig. 3(a). The
“error” in the solution was taken to be the Lp-norm of the
density residual. As shown in Fig. 3(a), the explicit solution
is very slow to converge. This solution takes approximately
10,000 time steps to become converged to engineering
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Fig. 2 Partial view of unstructured grid of triangles about the
NACA 0012 airfoil.

accuracy, which is taken to be a four order of magnitude
reduction in solution error. In contrast, the implicit solution
is converged to four orders of magnitude in only approximately
500 steps and is converged to machine zero in less than 2000
steps. The implicit solution costs approximately 75% more
per time step than the explicit solution because of the
increased number of operations required to evaluate the flux
jacobians. This increase in CPU time is far out-weighed by
the faster convergence to steady state in that a converged
solution is obtained with the implicit relaxation scheme with
an order of magnitude less CPU time than the explicit scheme.
The resulting steady pressure distribution is shown in Fig.
3(b). For this case there is a relatively strong shock wave on
the upper surface of the airfoil near 62% chord and a
relatively weak shock wave on the lower surface near
30% chord. The pressure distribution indicates that there
is only one grid point within the shock structure, on either the
upper or lower surface of the airfoil, due to the sharp shock
capturing ability of flux-vector splitting.

8r

4 ..
explicit

0 time-marching

log .4t
(error) ,
-8r implicit
—12k time-marching
-16 1 1 1 ! ]
0 5000
Iter ation
(a) convergence histories.
1.5
upper
1.0 surface
S5t
-C, Of
-.5 -

(b) steady pressure distribution.

Fig. 3 Comparison of steady-state results for the NACA 0012
airfoil at M, = 0.8 and a = 1.25°,



To assess the accuracy of the three-dimensional,
unstructured-grid, upwind-Euler algorithm, calculations
were performed for the ONERA M6 wing.1® The M6 wing has a
leading edge sweep angle of 30°, an aspect ratio of 3.8, and a
taper ratio of 0.562. The airfoil section of the wing is the
ONERA D" airfoil which is a 10% maximum thickness-to-
chord ratio conventional section. The results were obtained
using a grid which has 154,314 nodes and 869,056
tetrahedra. The surface triangulation for the upper surface of
the wing is shown in Fig. 4 and a partial view of the mesh in
the symmetry plane is shown in Fig. 5. The mesh in the
symmetry plane reveals how coarse the mesh actually is off of
the surface of the wing. The results were obtained using the
explicit time-marching scheme since it requires half of the
memory of the implicit scheme. The code was run for
6000 time steps at a CFL number of 5.0. The solution
required approximately 150 hours of CPU time and 125
million words of memory on the Cray-2 computer at the
Numerical Aerodynamic Simulation facility located at NASA
Ames Research Center.

Figure 6 shows surface pressure coefficient comparisons
with the experimental data at five span stations including
n = 0.2, 0.44, 0.65, 0.9, and 0.95. In these plots the Euler
results are given by the solid curves where plus signs have
been included to indicate the actual grid point values which are

Fig. 4 Upper surface grid for the ONERA M6 wing.
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Fig. 5 Partial view of symmetry plane mesh for the ONERA
M6 wing.

connected with straight line segments. The experimental data
is represented by the circles. For n = 0.2 shown in Fig. 6(a),
there are two shock waves along the chord. The forward shock
wave is well predicted including the suction peak. The second
shock wave Is predicted slightly downstream of the
experimental shock location which is typical of inviscid
methods for this case. Also, the lower surface pressure
coefficients agree well with the data. At n = 0.44 shown in Fig.
6 (b), the shock locations have begun to coalesce. The leading
edge suction peak is well predicted and both shock waves are
captured sharply. At n = 0.65 shown in Fig. 6(c), the forward
shock wave is near 20% chord and the second shock wave is
near midchord. All of the pressure levels are well predicted
and both shocks are captured sharply with only one grid point
within the shock structure. There are also no overshoots or
undershoots near the shocks due to the flux limiting.
Furthermore, the lower surface pressure coefficients are
predicted accurately. At n = 0.9 shown in Fig. 6(d), the two
shocks have merged to form a single, relatively strong, shock
wave near 25% chord. Here the shock is very sharply
captured and the calculated pressures again agree well with the
experimental data. Finally at n = 0.95 shown in Fig. 6(e), the
shock wave is slightly stronger than the previous span station.
Here, the calculated shock also has only one interior point.
For this case though, the pressure level upstream of the shock
is slightly underpredicted due to the coarseness of the mesh.

Figure 7 shows pressure contour lines on the surface of
the wing plotted using an increment of Ap = 0.02. Pressure
contours on the upper surface are shown in Fig. 7(a);
Pressure contours on the lower surface are shown in Fig.
7(b). The upper surface contours (Fig. 7(a)) clearly show
the lambda-type shock wave pattern formed by the two inboard
shock waves which merge together near 80% semispan to form
the single strong shock wave in the outboard region of the
wing. Also, the forward shock wave appears to be more
sharply captured than the second shock wave. This, however,
is due to the mesh being more dense in this region than in the
midchord region. The lower surface contours (Fig. 7(b}))
indicate that there is very little spanwise variation in
pressure.

Concluding Remarks

Improved algorithms for the solution of the three-
dimensional time-dependent Euler equations are presented for
aerodynamic analysis involving unstructured dynamic meshes.
The improvements have been developed recently to the spatial
and temporal discretizations used by unstructured grid flow
solvers. The improved spatial discretization involves a flux-
split approach which is naturally dissipative and captures
shock waves sharply with at most one grid point within the
shock structure. The temporal discretization involves either
an explicit time-integration scheme using a multi-stage
Runge-Kutta procedure or an implicit time-integration
scheme using a Gauss-Seidel relaxation procedure which is
computationally efficient for either steady or unsteady flow
problems. With the implicit Gauss-Seidel procedure, very
large time steps may be used for rapid convergence to steady
state, and the step size for unsteady cases may be selected for
temporal accuracy rather than for numerical stability.

Steady flow results are presented for both the NACA 0012
airfoil and the ONERA M6 wing to demonstrate applications of
the new Euler solver. The steady results showed that rapid
convergence to steady state could be achieved with the implicit
time-marching in comparison with results obtained using
explicit time-marching. A factor of ten reduction in
computational cost was obtained for the case that was
presented. Steady flow results were also presented for the
ONERA M6 wing to determine the accuracy of the three-
dimensional capabilitiy. Only explicit time-marching was
used because of the large amount of computer memory that was
required. The computed surface pressure coefficients showed
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that the shock waves were captured sharply with only one grid
point within the shock structure due to the flux-splitting and
there were no overshoots or undershoots near the shocks due to
the flux-limiting. The pressure coefficients resembled those
that are known to be produced by structured-grid Euler
methods and they also agreed well with the experimental data.
Future work will focus on validating the implicit time-
marching procedures in 3D and extending the methods to solve
the Navier-Stokes equations.
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